换而言之。
按照孤点粒子的情况来推测,后两个阶段应该也有对应的。。。唔怎么说呢,应该描述为有对应的物理现象?
剩余的两个阶段徐云也花了一些零散时间研究过,奈何由于能力问题,他一直没有找出正确的解——如今徐云的能力大概在教授之上院士之下,而这两个阶段中最简单的第二阶段也属于菲尔兹奖。。。也就是数学最高奖的难度层次了。
至于第三阶段的那个神秘比值。。。。徐云敢肯定,它一定是一项可以震动世界的结果,保守估计都和相对论是同一级的,属于徐云目前哪怕花掉所有思维卡都不可能触及的高度。
至少。。。。徐云得和老爱见过一次面,才有可能讨论那事儿。
当然了。
没结果归没结果,徐云倒也不至于一点收获都没有。
譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。
因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。
所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。
他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。
当然了。
即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。
随后徐云深吸一口气,将注意力放到了面前的算纸上。
只见他拿起笔,很快在纸上写下了那道方程:
4db2=4(√(d1d2))2[2d0]2=√(d1d2)[d0]=(1-η2)≤1。。。。。。。
{qjik}K(Zt)=∑(jik=S)n(jik=q)(xi)(wj)(rk);(j=0,1,2,3…;i=0,1,2,3…;k=0,1,2,3…)
{qjik}K(Zt)=[xaK(Z±S±N±p),xbK(Z±S±N±p),…,xpK(Z±S±N±p),…}∈{dh}K(Z±S±N±p)。。。。。。。
(1-ηf2)(Z±3)=[{K(Z±3)√d}{R}]K(Z±m±N±3)=∑(ji=3)(ηa+ηb+ηc)K(Z±N±3);
(1-η2)(Z±(N=5)±3):(K(Z±3)√120)K[(13)K(8+5+3)]K(Z±1)≤1(Z±(N=5)±3);
w(x)=(1-η[xy]2)K(Z±S±N±p)t{0,2}K(Z±S±N±p)t{w(x0)}K(Z±S±N±p)t。。。。。。。。。。。
最后的一个公式。。。或者说一个数值为:
Le(sx)(Zt)=[∑(1c(±S±p)-1{nxi-1}]-1=n(1-x(p)p-s)-1。
这是一个标准的正则化组合系数和解析延拓方程组,涉及到了无限多层次的对称与不对称曲线曲面的圆对数与拓扑。
其中第一阶段是一到三行,通过∑(jik=S)n(jik=q)(xi)(wj)可以确定曲面与经线成了某个定角,从而假设定模型λ=(A,b,π),以及观测序列o=(o1,o2,。。。,ot)。
按照上面的逻辑推导,就可以得出孤点粒子的概率轨道。
而徐云现在要做的则是。。。。。
推导第三到第五行,也就是第二阶段。
徐云解答第二阶段的思路是讨论存在性问题,再将现在的收敛半径变为无穷大,从而在整个实数线上收敛。
如今在陈景润思维卡的加持下,徐云对于自己思路的把握又高了几分——这个方向没错。
随后他顿了顿,继续推导了起来。
“已知允许幂级数中的变量x取复数值时,幂级数收敛的值在复平面上形成一个二维区域,就幂级数来说,这个区域总是具有圆盘的形状。。。。。。”
“然后利用高斯函数的Fourier变换F{e?a2t2}(k)=πae?π2k2a2,以及poisson求和公式可以得到。。。。。。”
“考虑积分g(s)=12πi∮γzs?1e?z?1dz,其中围道应该是limk→∞gk(s)=g(s)。。。。。”(这些推导是我自己算的,这部分我不太确定正不正确,用了留数定理和梅林积分变换,要是有问题欢迎指正或者读者群私聊我,这种涉及到比较多数学问题的推导不是我的专精方向)
众所周知。
解析延拓就是指两个解析函数f1(z)与f2(z)分别在区域d1与d2解析,区域d1与d2有一交集d,且在区域d上恒有f1(z)=f2(z)。
这时便可以认为解析函数f1(z)与f2(z)在对方的区域上互为解析延拓,同时解析函数f1(z)与f2(z)实际上是同一函数f(z)在不同区域的不同表达式。
举个最简单的例子。
https://www.cwzww.com https://www.du8.org https://www.shuhuangxs.com www.baquge.cc